MATHEMATICS APPLICATIONS

MAWA Semester 1 (Unit 3) Examination 2019

Calculator-Assumed

Marking Key

© MAWA, 2019

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to
 anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing
 them how the work is marked but students are not to retain a copy of the paper or marking guide until the
 agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is 14th June.

Section Two: Calculator-assumed

Question 7 (a)

Solution	
$\frac{ar^{7}}{ar^{2}} = 32$ r = 2 ∴ the first four terms are 2,4,8,16	
Marking key/mathematical behaviours	Marks
determines value of r	1
states the first four terms	1

Solution

Question 7 (b)

$n = 0, T_2 = T_1 - 0^2 = 15$	
$n = 1, T_3 = T_2 - 1^2 = 14$	
$n = 2, T_4 = T_3 - 2^2 = 10$	
\therefore the first four terms are 15,15,14,10	
Marking key/mathematical behaviours	Marks
• determines terms 2,3,4 using the n^{th} term formula by substituting values	1
of n	
states the first four terms	1 1

Question 7 (c)

			S	olution			
(i)							
	n	1	2	3	4	5	6
	T_n	3	3.75	4.5	5.25	6	6.75
$4T_1 =$ 12 = $T_2 =$ (ii)		on difference	e of 0.75 exit	s, sequence	is an A.P.		
Markinę	g key/mather	matical beha	viours				Marks
completes all entries correctly				2			
 identifies sequence as an A.P 				1			

(2 marks)

(100 Marks)

(3 marks)

Question 8 (a)&(b)

(3 marks)

Solution					
Populat	ion statistics for Australi	ia and Wes	tern Australia	a 2008 and 20	018
		Jun-08		Jun-18	
	Males	10572045		12397898	
Australia	Females	10677154		12594471	
	Total	21249199		24992369	
	Males	1094894		1298288	
Western Australia	Females	1076206		1297589	
Australia	Total	2171100		2595877	
 (a) numbers 21249199 and 12494471 are arrived at by calculator addition and subtraction respectively. (b) The number for females in WA in 2008 is incorrect. Seems too small and the number of males and females don't sum to the total given, which does coom reasonable 			249199 594471 076206		
	ne two correct numbers				1
• identifies	s the number of females in		08 as incorrec	t and	
-	a plausible explanation a	-			1
 states th 	ne correct number of fema	les (107620	6)		1

Question 8 (c)

(4 marks)

		S	olution		
(1) —	98288 95877 ×100	0 = 50.01% (to two dec	. pls)		▲ 346366
	Populatio	on percentages for Austra	lia and Western Australia	2008 and 20	18
			Jun-08	Jun-18	
	Australia	Males	49.75%	49.61%	
	Australia	Females	50.25%	50.39%	
	Western	Males	50.43%	50.01%	
	Australia	Females	49.57%	49.99%	
Marking ke	ey/mathema	atical behaviours			Marks
(i)					
• us	es the corr	ect numbers			1
• sh	ows the div	vision and multiplies by	100		1
(ii)					
• sta	ates at leas	t two of the correct %'s			1
• ca	lculates all	the %'s correctly			1

Question 8 (d)

(2 marks)

Solution	
In Australia, the proportion of males decreased over time (over the decade 08-18 proportion of females increased.) whilst the
In Western Australia, the proportion of males is higher than the proportion of fema however, for Australia as a whole, the reverse is true.	ales,
Marking key/mathematical behaviours	
• states an association of variables, eg. proportion of M/F's over time or	
proportion of M/F between Australia and WA etc.	1
interprets what the association is indicating eg. Increasing/decreasing	1

Question 8 (e)

(1 mark)

Solution		
Because we are able to make proportional comparisons which are more helpful than array's		
of large numbers for making comparisons.		
Marking key/mathematical behaviours	Marks	
identifies/refers to use of proportional comparisons	1	

Question 9 (a)

(3 marks)

Solution	
Must finish at vertex C	
One example of trail:	
Office - A - B - F - A - C - D - H - E - G - F - E - D - J - C	
or another permutation that covers every edge once only, starting at the office en vertex C.	ding at
Marking key/mathematical behaviours	Marks
• states trail ends at vertex C	1
completes an open trail	1
 correctly states a Semi-Eulerian trail 	1

Question 9 (b)

(3 marks)

Solution	
(i) Office $-A-B-F-G-E-H-D-J-C$	
OR	
Office - A - C - J - D - H - E - G - F - B	
(ii) Hamiltonian Trail (or Semi-Hamiltonian)	
Marking key/mathematical behaviours	Marks
describes a route starting at the office with no classroom repetitions	1
correctly states route	1
states Hamiltonian Trail or Semi-Hamiltonian	1

Questions 9 (c)

Solution	
No, it is no longer possible as classroom E or F would have to be revisited.	
Marking key/mathematical behaviours	Marks
states no	1
identifies repetition of vertices	1

Question 10 (a)

(2 marks)

Solution	
Marking key/mathematical behaviours	Marks
correctly draw at least 4 edges	1
correctly draw all edges	1

Question 10 (b)

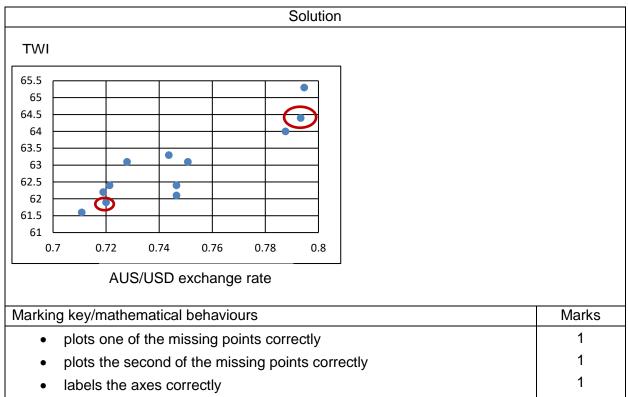
(4 marks)

	Solution	
	A B C D	
	$A \begin{bmatrix} 2 & 1 & 2 & 1 \end{bmatrix}$	
(i)	$B = \begin{bmatrix} 1 & 3 & 2 & 0 \end{bmatrix}$	
	$M = \frac{1}{C} \begin{bmatrix} 2 & 2 & 3 & 1 \end{bmatrix}$	
	$M^{2} = \frac{B}{C} \begin{vmatrix} 1 & 3 & 2 & 0 \\ 2 & 2 & 3 & 1 \\ D & 1 & 0 & 1 & 1 \end{vmatrix}$	
(ii)	The zero elements indicate there are no two-edge routes between To	wn B and
	D	
Marking	key/mathematical behaviours	Marks
•	states at least 12 correct element entries	1
•	correctly states all entries	1
 identifies that the zero signifies no two-step routes 		1
•	correctly identifies Town B and D	1

Question 10 (c)

(4 marks)

Solution	
Yes, the graph is planar	
LHS = v + f - e	
v = 4 = 4 + 3 - 5	
e=5 = 2	
$f = 3 = RHS \therefore verified$	
Marking key/mathematical behaviours	Marks
states yes	1
 correctly states number of faces, vertices and edges 	1
 correctly substitutes values into Euler's formula 	1
 verifies left hand-side equals right-hand side 	1


CALCULATOR-ASSUMED MARKING KEY

(1 mark)

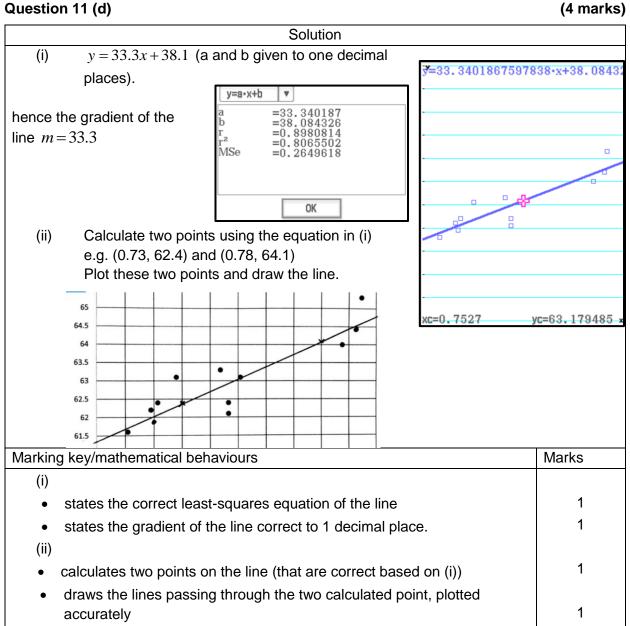
Solution	
The AUS/USD exchange rate	
Marking key/mathematical behaviours	Marks
identifies the AUS/USD as the explanatory variable	1

Question 11 (b)

Question 11 (a)

Question 11 (c)

(3 marks)


	Solution	
(i) enter the data Set calculation menu on calculator for linear regression and read off	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	326 814 502
r = 0.8981 to 4 decimal places.	6 0.7465 62.4 7 0.7436 63.3 8 0.7213 62.4 9 0.72 61.9 10 0.7108 61.6 11 0.7279 63.1 12 0.7189 62.2	
	ndicates a strong positive linear correlation, since the AUS/USD exchange rate increases. This is reflected scient of ~0.9	•
Marking key/mathematical be	ehaviours	Marks
• states <i>r</i> = 0.8981		1
 comments on the strength, direction and linearity of the scatter plot from the graph. 		1

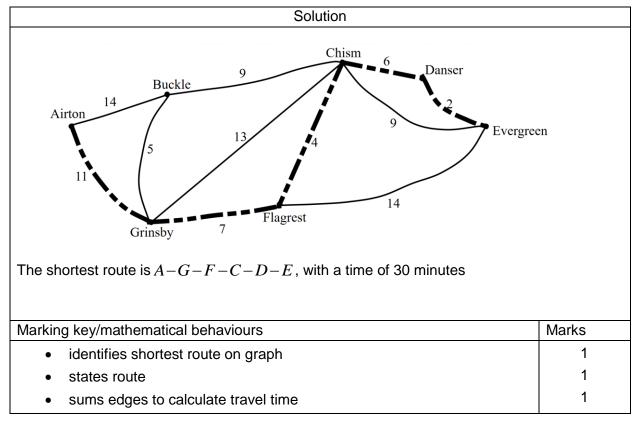
(3 marks)

links the comment (above) to the TWI and AUS/USD exchange rate to • the value of r = 0.8981

(4 marks)

1

Question 11 (e)


Solution		
The coefficient of determination $R^2 = (0.8981)^2 = 0.806584$	y=a•x+b ▼ a =33.340187	
Or more accurately, from the calculator $R^2 = 0.8066$ (to 4	b = 38.084326 r = 0.8980814	
decimal places)		
The coefficient of determination tells us that approximately		
80% of the variation in the AUS/USD exchange rate is	ОК	
associated with the variation in the TWI.		
Marking key/mathematical behaviours		Marks
 states the correct coefficient of determination (by either 	er method)	1
 gives a statement that indicates understanding of the strength of the 		
association in terms of variation.		1

Question 11 (f)

Solution	
The TWI of the 13 th month will be $= 33.3 \times 0.723 + 38.1 = 62.18$ (to two decimal places)	
This should be reasonably reliable (since the association is strong) providing that there are	
no confounding events that affect the association between the two variables, as it is a	
prediction into the future.	
Marking key/mathematical behaviours	Marks
determines the TWI correctly	1
• provides an appropriate comment consistent with the strength of the association in the past, while acknowledging the possibility of changing into the future.	1

Question 12 (a)

(3 mark)

Question 12 (b)

(3 mark)

Solution	
Shortest route is no longer available. Alternate route of $A-B-C-D-E$ takes 1 minute	
longer (31 minutes).	
Marking key/mathematical behaviours	Marks
states time travelled will increase	1
identifies new shortest route	1
calculates new time taken	1

Question 13 (a)

Г

Solution

CALCULA	TOR-ASSUMED
	MARKING KEY

(1 mark)

Solution	
A decrease of 20% of alpacas at the end of each year	
Marking key/mathematical behaviours	Marks
 identifies there is a decrease 	1

Question 13 (b)

Solution	
5 alpacas are added each year	
$A_n = 0.8A_{n-1} + 12 - 7$	
$A_n = 0.8A_{n-1} + 5$	
Marking key/mathematical behaviours	Marks
states 5 alpacas	1
 simplifies the recursive rule correctly to show "5" is added 	1

Question 13 (c)

Solution20 = 0.95(20) + k $\therefore k = 1$ Marking key/mathematical behavioursMarks• substitutes $A_n = A_{n-1} = 20$ • solves for "k" correctly

(2 marks)

Question 14 (a)

Solution

Since the coefficient of determination is given as 0.8577, the percentage of the variation will be 85.77%.

Marking key/mathematical behaviours	Marks
uses the coefficient of determination to state the correct percentage	1

Question 14 (b)

Solution	
By substitution into the predicted fair value formula given, $A = 30.2$ and $B = 29.3$	
Marking key/mathematical behaviours	Marks
states the correct resale values	1

Question 14 (c)

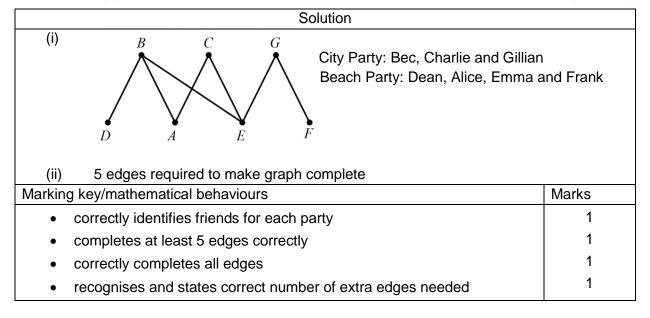
Solution	
By subtraction, $C = -0.3$ and $D = -1.85$	
Marking key/mathematical behaviours	Marks
 states the correct values for C and D (allow follow through if B was not correct in part (b)). 	2

Question 14 (d)

Solution Residual 2.5 2 1.5 1 Residual 0.5 Kilometres(k) 0 -0.5 -1 -1.5 -2 -2.5 Marking key/mathematical behaviours Marks 1 plots at least two of the point correctly • 1 plots all points correctly •

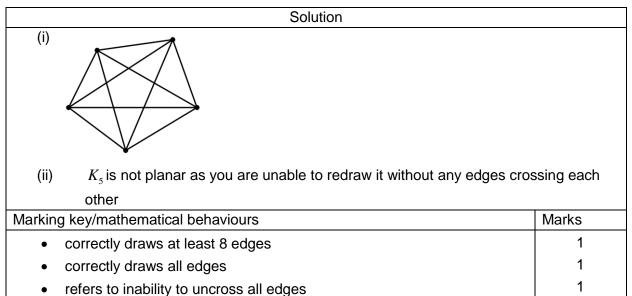
(1 mark)

Question 14 (e)

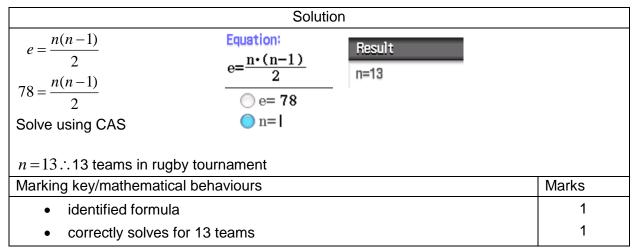

(1 mark)

Solution	
The residuals are roughly half positive and half negative. (However, they are not really randomly dispersed, which does indicate that a better model, other than a linear one may be possible).	
Marking key/mathematical behaviours Marks	
 Indicates that the residuals are spread equally above and below the 	
horizontal axis	1

CALCULATOR-ASSUMED MARKING KEY


Question 15 (a)

(4 marks)



Question 15 (b)

(3 marks)

Question 15 (c)

(3 marks)

Question 16 (a)

AP: d = 575 - 500 = 75d = 646 - 575 = 71d = 714 - 646 = 68Since there is no common difference, d ∴ not an A.P. GP: $r = \frac{575}{500} = 1.15$ $r = \frac{646}{575} = 1.12$ $r = \frac{714}{646} = 1.11$

Since a common ration, r does not exists, ∴ not a G.P.

Marking key/mathematical behaviours Ma	
 calculates at least two "d" values 	1
 calculates at least two "r" values 	1
states conclusion	1

Question 16 (b)

Solution		
(i) there is a 5% decrease in the population at the end of each year		
(ii) 100 new people moved into the town at the end of each year		
Marking key/mathematical behaviours Marks		Marks
states a decrease in population		1
•	states an additional 100 new people move into town	1

Question 16 (c)

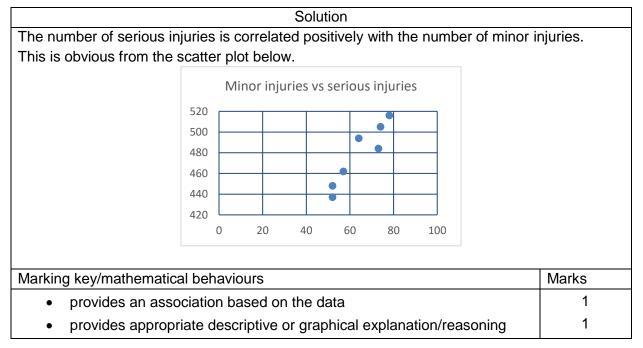
Solution	
Population in 2018 is 1005	
Marking key/mathematical behaviours Ma	
determines correct population	1

Question 16 (d)

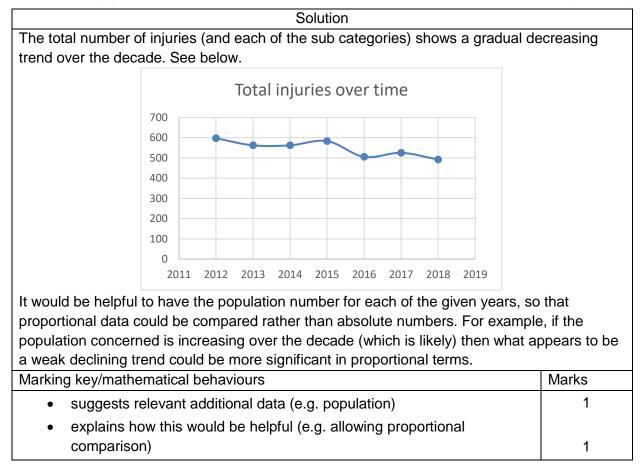
Solution	
Let maximum population be x.	
x = 0.95x + 100	
x = 2000	
∴ the maximum population is 2000	
Marking key/mathematical behaviours M	
 identifies steady state reaches 2000 	1
 use algebra correctly to find the steady state 	1

(2 marks)

(1 marks)


(2 marks)

Question 17 (a)


(2 marks)

Solution		
Create a few survey questions and ask drivers within the school community to complete the		
survey. This could include, student drivers, parent drivers and teachers.		
Source data already collected and published by other local organisations such as the national		
driver safety council, the police force or RAC etc.		
Marking key/mathematical behaviours Marks		
 provides an example of direct (or primary) data collection such as a survey 	1	
 provides an example of a secondary source for the data 	1	

Question 17 (b)

Question 17 (c)

Question 18 (a)

Solution	
$M_{n+1} = M_n + 5, \ M_1 = 50$	
Marking key/mathematical behaviours Marks	
states recursive rule correctly	1
• states the first term 1	

Question 18 (b)

Solution	
$M_n = 50 + 5(n-1)$	
$M_n = 45 + 5n$	
Now $200 = 45 + 5n$	
n = 31	
\therefore it takes Julie 31 months to pay off the interest free loan	
Marking key/mathematical behaviours Marks	
determines the nth term formula	1
substitutes 200 into the formula and solve for n correctly	
states correct number of months	

Question 18 (c)

Solution	
From CAS total amount loaned to Julie was \$3875	
Marking key/mathematical behaviours N	
determines correct total amount from CAS	1

Question 18 (d)

Page 18

(2 marks)

(1 marks)

Solution		
(i)	Use $T_{n+1} = T_n + 10$, $T_1 = 35$ and Total amount loaned as \$3875, n = 25	months
(ii)	$T_{25} = 275$	
Marking key/mathematical behaviours Marks		Marks
determines correct answer		1
determines correct answer		1

(3	marks)